Towards Seasonal Predictions of
Regional Hurricane Activity

Hypothesis: tnhanced resolution & corrected large-scale climate
improve simulation and prediction of regional climate & extremes.

Practical Goal: Build a seasonal to multi-decadal forecasting system to:
* Yield improved forecasts of large-scale climate
* Enable forecasts of regional climate and extremes



Qutline

« Motivation

« Develo
l@Ells ©

e Phase |

bment of prediction model:

N high atmospheric resolution

ol i spEclivE oEeasis:

ocean/sea Ice Inrtialize

- Next stages



Why make predictions?

- Pragmatic reasons: skillful predictions help support

decisions by provi

 Scientific reasons:
element of scientr
hypotheses under

ding glimpses of the future.

prediction Is a fundamental
Ic method, providing tests to
ying them.




Seasonal hurricane counts
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Sources of & Limitations on Climate Predictability

-

Months to decades

\

Many decades

hours to
a month

to centuries

Evolution of initial state of ocean/atmosphere.

Need good models and observations of
present and past

Climate response to forcing

(e.g., CO,, soot/dust, sun, volcanoes, land use)

need good models and estimates of forcing

A

Predictability has inherent limits: need to be probabllistic.



“lements of Climate Prediction System of Systems

Global climate observing system:
Sparse observations of many
quantities across globe.

Dynamical modeling system:
Allows forward integration from
present state, including expected
changes In radiative forcing.

Image sources: NOAA/PMEL and
Argo.ucsd.edu

Data assimilation system:

Combines sparse observations with
model, to estimate present state.
Usually based on dynamical model.

Analysis and dissemination system:
_ Take output from predictions and
& 7 produce “useful” information,

¥ = communicate predictions.




Predictions of Basinwide Hurricane Activity

Past Performance N. Atlantic Basinwide Freqg. Predictions
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Statistical, dynamical and hybrid
statistical-dynamical schemes
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Ordered probability of occurrence
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Predicted and Observed Annual Number of North Atlantic Hurricanes

Correct predictions of basin-wide active 2010
but not of U.S. landfall absence
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Can we reliably predict statistics of storms

more regionally than “basin-wide"?

(B) Observed Atlantic tropical storm tracks 2010
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Tracks Genesis Landfall
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GFDL FLOR: Experimental high-resolution coupled seasonal to
decadal prediction system

Goal: Build a seasonal to decadal forecasting system to:
Yield improved forecasts of large-scale climate
Enable forecasts of regional climate and extremes

. Precipitation in Northeast USA Hligh resolution
Medium (CM2.5-FLOR)

resolution
(G

Delworth et al. (201 2), Vecchi et al. (2014)

MEaliiccahersion of CM25 (Delworth et al. 2012);

* 50km cubed-sphere atmosphere
* |° ocean/sea ice (low res enables prediction work)
~ [ 5-18 years per day. Multi-century integrations. 15,000+ model-years of

experimental seasonal predictions completed and being analyzed.



Structure of ENSO anomalies improved by atmospheric resolution

Regressions onto NINO3 SSTA Obs: HadISST1, ERA-Interim, CMAP
T-surf (K/K) Zonal Stress (N/m2/K) Precipitation (mm/d/K)
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Hypothesis: Enhanced atmos./land resolution improves climate

~(FLOR to ORS)
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FLOR improves simulation of land
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Flux adjustment for predictions of regional TC activity

- Hypothesis: Biases in large-scale climate degrade simulation and
prediction statistics of regional and extreme climate, flux
adjustment will lead to iImprovements — particularly at longer
leads.

- Methodology: [FA version of FLOR with climatological (once
computed, independent of model state) adjustment to
momentum, freshwater and enthalpy fluxes to ocean.

Repeat simulations and predictions with FLOR-FA, compare to
FEOR.

b aniieinal (0014, | Climate).



Large-scale biases in summer climate map onto some of 1C biases
Sl Shear Potential Intensity

July-November 850-200hPa Sea Surface Temperature (°C)
(a) Obs.1981-2010

July-November 850-200hPa Vertical Wind Shear (m/s) July-November Tropical Cyclone Potential Intensity (m/s)
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TC tracks in free-running FLOR-FA improved over FLOR
particularly in North Pacific and North Atlantic
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TC density relation to NINO3.4 improved in FLOR-FA:
due to improvements in simulation of El Nifo
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Structure of ENSO improves in FA, as does its phase-locking

Regression on NINO3 SSTA
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N. American precip improves from FA (look at E. and W. Texas)
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FLOR Seasonal Predictions (phase |)

- 1980-2013 retrospective forecasts (| 2-member ensemble)

« Ocean & sea Ice Initialized from CM2.1 EnKF3.| Assimilation

- Atmosphere and land inrtialized from ensemble of AGCM (i.e, only
information contained in SST and radiative forcing in atmos/land Ics)

- Done with two versions of FLOR (AO6 & BOI, differ in ocean physics)
— will discuss BO |

- These retrospective forecasts and future real forecasts to be
submitted to NMME starting March 2014



Retrospective predictions of ASO SST no worse In FLOR-FA
than FLOR — both somewhat better than CM2. |

Retrospective 1981-2012 Correlation of Predictions of August-October Sea Surface Temperature

(@) CM2.1 Initialized 1-July (b) FLOR Initialized 1-July (c) FLOR-FA Initialized 1-July

@D | FLOR-FA

FE200 correl. of Aug-Oct SSIA prediclies

Vecchi et al. (2014)
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FLOR-FA 1s among best NA hurricane seasonal prediction systems

(symbol above diagonal: FLOR-FA nominally ‘better’)

Performance of North Atlantic Hurricane Frequency Forecasts with FLOR-FA and other published methods
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Can we reliably predict statistics of storms more regionally than
“basin-wide"” number?

GFDL-FLOR 1981-2012 |-July Initialized Forecasts for July-December
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Rank correlation: Can experimental FLOR forecasts distinguish years with many
and few storms passing within 10°x10° of a point.
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FLOR-FA outperforms FLOR at predictions of regional

(and basinwide) TC ac

vity — particularly at long leads

(a) Percentage of TC areas with significant rank correlation
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Increasing ensemble size from |2 to 48 improves regional TC predictions

Ensemble Size Impact on 1981-2011 Predictions of Regional TC Activity
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g ERERIMENTAL RESEARCH PRODUCT — NOT AN OFFHCIAC O EE @S
Experimental seasonal TC density forecasts with GFDL-FLOR-FA
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Towards seamless (or “lightly stitched”) weather-to-centennial
TC changes in high-resolution global coupled models
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CM?2.5 Tropical storm density response to CO, doubling
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Seamless predictions: 5-/ days forecasts of Sandy with
EEPIScolpled model similaF o FE®)
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Summary

» Increased atmospheric and land resolution, and better land model:
Yields improved forecasts of large-scale climate
Enables simulation and forecasts of regional climate and extremes

- Skillful seasonal predictions of TC activity at regional scales appear
feasible

Large (many |0s) ensembles appear desirable

- Flux adjustment improves simulation and seasonal prediction of
regional and climate extremes.
FA adds one season to skill in regional TC prediction
For what problems is FA a net negative!?



Next Steps

- Higher resolution to get to intensity
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HIFLOR: doubling atmospheric resolution of FLOR (cost 6x) allows us
model to simulate Cat. 4-5 TCs (most destructive storms)
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10-Aug.: Cat. 5 Typhoon
(158 knot winds)
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Global TC frequency decrease Iin response to
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Density increase of Cat 3-4-5s In all basins
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Next Steps

- Higher resolution to get to intensity

- Atmospheric Initialization
Ocean Init Atmosphere & Ocean Init

tef corr of JJA,phase 1 (L.C.Jun.) tef corr of JJA,phase 2 (1.C.Jun)

June-August
Surface temperature

Analysis: Liwel Jia

September-November
50hPa heights

Analysis: Xiaosong Yang




Next Steps

- Higher resolution to get to intensity

» Atmospheric Initialization

- Assimilation bullt on FLOR:
Goal: Initial state In better balance (reduce dnift)
Computationally expensive




Next Steps

- Atmospheric Initialization

igher resolution to get to Intensity
« Assimilation built on FLOR

 Make predictions explicitly probabillistic :
How do we build an error model?



Next Steps

« Atmospheric Initialization

- Higher resolution to get to intensity

- Assimilation bullt on FLOR

- Make predictions explicitly probabillistic

- Higher “top™: what Is the role of stratospheric processes in the
variation/change and prediction of extremes!
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